Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 5 - Section 5.5 - The Substitution Rule - 5.5 Exercises: 46

Answer

$$\int x^2\sqrt{2+x}dx=\frac{2}{7}\sqrt{(2+x)^7}-\frac{8}{5}\sqrt{(2+x)^5}+\frac{8}{3}\sqrt{(2+x)^3}+C$$

Work Step by Step

$$A=\int x^2\sqrt{2+x}dx$$ Sometimes, doing substitution does not eliminate any elements but does simplify the square root so that you can easily transform afterwards. Let $u=2+x$. Then $du=(2+x)'dx=dx$. And since $u=2+x$, we have $x=u-2$, so $x^2=(u-2)^2=u^2-4u+4$. $$A=\int(u^2-4u+4)\sqrt udu$$ $$A=\int(u^2-4u+4)u^{1/2}du$$ $$A=\int(u^{5/2}-4u^{3/2}+4u^{1/2})du$$ $$A=\frac{u^{7/2}}{\frac{7}{2}}-\frac{4u^{5/2}}{\frac{5}{2}}+\frac{4u^{3/2}}{\frac{3}{2}}+C$$ $$A=\frac{2\sqrt{u^7}}{7}-\frac{8\sqrt{u^5}}{5}+\frac{8\sqrt{u^3}}{3}+C$$ $$A=\frac{2}{7}\sqrt{(2+x)^7}-\frac{8}{5}\sqrt{(2+x)^5}+\frac{8}{3}\sqrt{(2+x)^3}+C$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.