Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 5 - Section 5.5 - The Substitution Rule - 5.5 Exercises: 12

Answer

$$\int\sec^22\theta d\theta=\frac{1}{2}\tan(2\theta)+C$$

Work Step by Step

$$A=\int\sec^22\theta d\theta$$ Let $u=2\theta$ Then $du=2d\theta$. So $d\theta=\frac{1}{2}du$ Substitute into $A$, we have $$A=\int\sec^2u(\frac{1}{2})du$$ $$A=\frac{1}{2}\int \sec^2udu$$ $$A=\frac{1}{2}(\tan u)+C$$ $$A=\frac{1}{2}\tan(2\theta)+C$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.