Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 5 - Section 5.3 - The Fundamental Theorem of Calculus - 5.3 Exercises - Page 401: 76

Answer

$\lim\limits_{n \to \infty}\frac{1}{n}( \sqrt{\frac{1}{n}} +\sqrt{\frac{2}{n}}+\sqrt{\frac{3}{n}}+...+\sqrt{\frac{n}{n}}) = \frac{2}{3}$

Work Step by Step

An integral can be expressed as the limit of a Riemann sum: $\int_{a}^{b}f(x)~dx = \lim\limits_{n \to \infty}\sum_{i=1}^{n}f(x_i^*)\Delta x$ Consider the interval $[0,1]$: $\Delta x = \frac{b-a}{n} = \frac{1-0}{n} = \frac{1}{n}$ $x_i^* = a+i~\Delta x = 0+\frac{i}{n} = \frac{i}{n}$ Note that $x_i^*$ is the right endpoint of each subinterval. $\lim\limits_{n \to \infty}\frac{1}{n}( \sqrt{\frac{1}{n}} +\sqrt{\frac{2}{n}}+\sqrt{\frac{3}{n}}+...+\sqrt{\frac{n}{n}})$ $= \lim\limits_{n \to \infty}\sum_{i=1}^{n}\sqrt{\frac{i}{n}}\cdot \frac{1}{n}$ $= \int_{0}^{1}\sqrt{x}~dx$ $= \frac{2}{3}x^{3/2}~\vert_{0}^{1}$ $= \frac{2}{3}[(1)^{3/2}-(0)^{3/2}]$ $= \frac{2}{3}(1-0)$ $= \frac{2}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.