Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 5 - Section 5.2 - The Definite Integral - 5.2 Exercises - Page 389: 25

Answer

$\int_{0}^{1}(x^3-3x^2)~dx = -\frac{3}{4}$

Work Step by Step

We can use the definition of the integral in Theorem 4 to evaluate the integral: $\int_{a}^{b}f(x)~dx = \lim\limits_{n \to \infty}\sum_{i=1}^{n}f(x_i)\Delta x$ $\Delta x = \frac{b-a}{n} = \frac{1-0}{n} = \frac{1}{n}$ $x_i = \frac{i}{n}$ $\int_{0}^{1}(x^3-3x^2)~dx = \lim\limits_{n \to \infty}\sum_{i=1}^{n}f(x_i)\Delta x$ $= \lim\limits_{n \to \infty}\sum_{i=1}^{n}[(\frac{i}{n})^3-3(\frac{i}{n})^2]~(\frac{1}{n})$ $= \lim\limits_{n \to \infty}~\frac{1}{n}~\sum_{i=1}^{n}(\frac{i^3}{n^3}-\frac{3i^2}{n^2})$ $= \lim\limits_{n \to \infty}~(\frac{1}{n})[\frac{n^2(n+1)^2}{4n^3}-\frac{3n(n+1)(2n+1)}{6n^2}~]$ $= \lim\limits_{n \to \infty}~(\frac{n^2+2n+1}{4n^2}-\frac{6n^2+9n+3}{6n^2}~)$ $= \lim\limits_{n \to \infty}~(\frac{1}{4}+\frac{1}{2n}+\frac{1}{4n^2}-1-\frac{3}{2n}-\frac{1}{2n^2}~)$ $= (\frac{1}{4}+0+0-1-0-0)$ $ = -\frac{3}{4}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.