Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 5 - Section 5.2 - The Definite Integral - 5.2 Exercises - Page 389: 22

Answer

$\int_{1}^{4}(x^2-4x+2)~dx = -3$

Work Step by Step

We can use the definition of the integral in theorem 4 to evaluate the integral: $\int_{a}^{b}f(x)~dx = \lim\limits_{n \to \infty}\sum_{i=1}^{n}f(x_i)\Delta x$ $\Delta x = \frac{b-a}{n} = \frac{4-1}{n} = \frac{3}{n}$ $x_i = 1+\frac{3i}{n}$ $\int_{1}^{4}(x^2-4x+2)~dx = \lim\limits_{n \to \infty}\sum_{i=1}^{n}f(x_i)\Delta x$ $= \lim\limits_{n \to \infty}\sum_{i=1}^{n}[(1+\frac{3i}{n})^2-4(1+\frac{3i}{n})+2]~(\frac{3}{n})$ $= \lim\limits_{n \to \infty}(\frac{3}{n})\sum_{i=1}^{n}(1+\frac{6i}{n}+\frac{9i^2}{n^2})+(-4-\frac{12i}{n})+(2)$ $= \lim\limits_{n \to \infty}(\frac{3}{n})\sum_{i=1}^{n}(-1-\frac{6i}{n}+\frac{9i^2}{n^2})$ $= \lim\limits_{n \to \infty}(\frac{3}{n})[~\sum_{i=1}^{n}-1-\sum_{i=1}^{n}\frac{6i}{n}+\sum_{i=1}^{n}\frac{9i^2}{n^2}~]$ $= \lim\limits_{n \to \infty}(\frac{3}{n})[-n-\frac{6}{n}\cdot \frac{n(n+1)}{2}+\frac{9}{n^2}\cdot \frac{n(n+1)(2n+1)}{6}]$ $= \lim\limits_{n \to \infty}(\frac{3}{n})[-n-3n-3+3n+\frac{9}{2}+\frac{3}{2n}]$ $= \lim\limits_{n \to \infty}(\frac{3}{n})[-n+\frac{3}{2}+\frac{3}{2n}]$ $= \lim\limits_{n \to \infty}(-3+\frac{9}{2n}+\frac{9}{2n^2})$ $= -3$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.