Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 5 - Section 5.2 - The Definite Integral - 5.2 Exercises - Page 389: 14

Answer

Using the left endpoint of each subinterval: $R_{100} = 0.8946$ Using the right endpoint of each subinterval: $R_{100} = 0.9081$ $0.8946 \lt \int_{0}^{2}\frac{x}{x+1}~dx\lt 0.9081$

Work Step by Step

We can compute the left Riemann sum for the function using the left endpoint of each subinterval. $\Delta x = \frac{b-a}{n} = \frac{2-0}{100} = \frac{1}{50}$ $x_i = \frac{i-1}{50}$ $R_{100} = \sum_{i=1}^{100}f(x_i)\Delta x$ $R_{100} = \sum_{i=1}^{100}\frac{x_i}{x_i+1}\Delta x$ $R_{100} = \frac{0}{0+1}(\frac{1}{50})+\frac{1/50}{1/50+1}(\frac{1}{50})+...+\frac{99/50}{99/50+1}(\frac{1}{50})$ $R_{100} = 0.8946$ We can compute the right Riemann sum for the function using the right endpoint of each subinterval. $\Delta x = \frac{b-a}{n} = \frac{2-0}{100} = \frac{1}{50}$ $x_i = \frac{i}{50}$ $R_{100} = \sum_{i=1}^{100}f(x_i)\Delta x$ $R_{100} = \sum_{i=1}^{100}\frac{x_i}{x_i+1}\Delta x$ $R_{100} = \frac{1/50}{1/50+1}(\frac{1}{50})+\frac{2/50}{2/50+1}(\frac{1}{50})+...+\frac{100/50}{100/50+1}(\frac{1}{50})$ $R_{100} = 0.9081$ Since the function is increasing, an estimate using the left endpoint of each subinterval is less than the exact value of the integral. Since the function is increasing, an estimate using the right endpoint of each subinterval is greater than the exact value of the integral. Therefore: $0.8946 \lt \int_{0}^{2}\frac{x}{x+1}~dx\lt 0.9081$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.