Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 5 - Review - Exercises - Page 422: 6

Answer

(a) $\lim\limits_{n \to \infty}\sum_{i=1}^{n}[(1+\frac{4i}{n})+2(1+\frac{4i}{n})^5]\cdot \frac{4}{n} = 5220$ (b) $\int_{1}^{5}(x+2x^5)~dx = 5220$

Work Step by Step

(a) We can express the integral as the limit of a Riemann sum: $\int_{a}^{b}f(x)~dx = \lim\limits_{n \to \infty}\sum_{i=1}^{n}f(x_i^*)\Delta x$ $\Delta x = \frac{b-a}{n} = \frac{5-1}{n} = \frac{4}{n}$ $x_i^* = a+i~\Delta x = 1+\frac{4i}{n}$ Note that $x_i^*$ is the right endpoint of each subinterval. $\int_{1}^{5}(x+2x^5)~dx$ $= \lim\limits_{n \to \infty}\sum_{i=1}^{n}f(x_i^*)\Delta x$ $= \lim\limits_{n \to \infty}\sum_{i=1}^{n}[(1+\frac{4i}{n})+2(1+\frac{4i}{n})^5]\cdot \frac{4}{n}$ $= 5220$ (b) We can use the Fundamental Theorem to evaluate the integral: $\int_{1}^{5}(x+2x^5)~dx$ $= (\frac{x^2}{2}+\frac{x^6}{3})~\vert_{1}^{5}$ $= (\frac{5^2}{2}+\frac{5^6}{3})-(\frac{1^2}{2}+\frac{1^6}{3})$ $= (\frac{25}{2} +\frac{15,625}{3})-(\frac{1}{2}+\frac{1}{3})$ $= (\frac{75}{6} +\frac{31,250}{6})-(\frac{5}{6})$ $= \frac{31,320}{6}$ $= 5220$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.