Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 4 - Section 4.7 - Optimization Problems - 4.7 Exercises - Page 337: 15

Answer

The largest possible volume of the box is $~~4000~cm^3$

Work Step by Step

Let $x$ be the length of one side of the base and let $h$ be the height of the box. Note that $x \geq 0$ and $h \geq 0$ We can express $h$ in terms of the area $A$ and $x$: $A = x^2+4xh$ $h = \frac{A-x^2}{4x}$ We can write an expression for the volume: $V = x^2h = x^2(\frac{A-x^2}{4x}) = \frac{Ax}{4}- \frac{x^3}{4}$ We can find the point where $V'(x) = 0$: $V(x) = \frac{Ax}{4}- \frac{x^3}{4}$ $V'(x) = \frac{A}{4}- \frac{3x^2}{4} = 0$ $A-3x^2 = 0$ $x^2 = \frac{A}{3}$ $x = \sqrt{\frac{A}{3}}$ $x = \sqrt{\frac{1200~cm^2}{3}}$ $x = \sqrt{400~cm^2}$ $x = 20~cm$ When $0 \lt x \lt 20$, then $L'(x) \gt 0$ When $x \gt 20$, then $L'(x) \lt 0$ Thus, $x=20~cm$ is the point where $V$ is a maximum. We can find the largest possible volume: $V(20) = \frac{Ax}{4}- \frac{x^3}{4}$ $V(20) = \frac{(1200~cm^2)(20~cm)}{4}- \frac{(20~cm)^3}{4}$ $V(20) = 6000~cm^3-2000~cm^3$ $V(20) = 4000~cm^3$ The largest possible volume of the box is $~~4000~cm^3$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.