Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 4 - Section 4.3 - How Derivatives Affect the Shape of a Graph - 4.3 Exercises - Page 304: 90

Answer

$f$ does not have a local maximum or a local minimum at $c$. However, $f$ has an inflection point at $c$ since the concavity changes at $c$.

Work Step by Step

$f'''$ is continuous and $f'''(c) \gt 0$ Thus, there is a neighborhood of $c$ such that if $~~c-\delta \lt x \lt c+\delta~~$, then $f'''(x) \gt 0$ Then $f''$ is increasing in this neighborhood of $c$ If $c-\delta \lt x \lt c$, $f''(x) \lt 0$ $f$ is concave down on the interval $(c-\delta, c)$ If $c \lt x \lt c+\delta$, $f''(x) \gt 0$ $f$ is concave up on the interval $(c, c+\delta)$ Therefore, $f$ does not have a local maximum or a local minimum at $c$. However, $f$ has an inflection point at $c$ since the concavity changes at $c$ An example of this situation is $f(x) = x^3$ where $c = 0$ $f'(0) = 3(0)^2 = 0$ $f''(0) = 6(0) = 0$ $f'''(0) = 6 \gt 0$ Note that $f(x) = x^3$ does not have a local maximum or a local minimum at $x=0$, but $f(x) = x^3$ has an inflection point at $x=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.