Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 3 - Section 3.8 - Exponential Growth and Decay - 3.8 Exercises - Page 243: 6

Answer

6a) P ( 30 ) = 145 million 6a) Comparison: The model predicts less than the actual data by 5 million. 6b) P ( 40 ) = 225 million 6b) Comparison: The model predicts more than the actual data by 11 million. 6c) P ( 30 ) = 256 million 6c) Comparison: The model predicts more than the actual data by 13 million. 6d) P ( 40 ) = 305.3 million 6d) Comparison: The model predicts more than the actual data by 31.8 million.

Work Step by Step

a) Since we are assuming that the “rate of population growth is proportionate to the population size” ( alternately “the relative growth rate is constant”) , we use the $e^{kt}$ formula from page 237 ( Formula 2 ). P ( t ) = P ( 0 ) $e^{kt}$ P ( 0 ) = year 1950 = 83 P ( 0 ) = 83 P ( t ) = 83 $e^{kt}$ 1960 – 1950 = 10 = t ← year 1960 = 100 million P ( 10 ) = 83 $e^{10k}$ = 100 83 $e^{10k}$ = 100 $e^{10k}$ = $\frac{100}{83}$ ln $e^{10k}$ = ln $\frac{100}{83}$ 10k = ln $\frac{100}{83}$ k = $\frac{ln \frac{100}{83}}{10}$ ≈ 0.01863 P ( t ) = 83 $e^{kt}$ P ( t ) = 83 $e^{0.01863t}$ 1980 – 1950 = 30 = t ← year 1980 P ( 30 ) = 83 $e^{0.01863( 30 )}$← year 1980 6a) P ( 30 ) = 145 million ← year 1980 prediction with model Actual data for year 1980 = 150 million 6a) Comparison: The model predicts less than the actual data by 5 million. b) Use figures for 1960 and 1980 to predict year 2000. P ( t ) = P ( 0 ) $e^{kt}$ P ( 0 ) = year 1960 = 100 P ( 0 ) = 100 P ( t ) = 100 $e^{kt}$ 1980 – 1960 = 20 = t ← year 1980 = 150 million P ( 20 ) = 100 $e^{20k}$ = 150 100 $e^{20k}$ = 150 $e^{20k}$ = $\frac{150}{100}$ ln $e^{20k}$ = ln $\frac{150}{100}$ 20k = ln $\frac{150}{100}$ k = $\frac{ln \frac{150}{100}}{20}$ ≈ 0.02027 P ( t ) = 100 $e^{kt}$ P ( t ) = 100 $e^{0.02027t}$ 2000 – 1960 = 40 = t ← year 2000 P ( 40 ) = 100 $e^{0.02027( 40 )}$ 6b) P ( 40 ) = 225 million ← year 2000 Actual data for year 2000 = 214 million 6b) Comparison: The model predicts more than the actual data by 11 million. c) Use figures for years 1980 and 2000 to predict 2010. Actual data for 2010 = 243 million P ( t ) = P ( 0 ) $e^{kt}$ P ( 0 ) = year 1980 = 150 P ( 0 ) = 150 P ( t ) = 150 $e^{kt}$ 2000 – 1980 = 20 = t ← year 2000 = 214 million P ( 20 ) = 150 $e^{20k}$ = 214 150 $e^{20k}$ = 214 $e^{20k}$ = $\frac{214}{150}$ ln $e^{20k}$ = ln $\frac{214}{150}$ 20k = ln $\frac{214}{150}$ k = $\frac{ln \frac{214}{150}}{20}$ ≈ 0.01777 P ( t ) = 150 $e^{kt}$ P ( t ) = 150 $e^{0.01777t}$ 2010 – 1980 = 30 = t ← year 2010 P ( 30 ) = 150 $e^{0.01777( 30 )}$ 6c) P ( 30 ) = 256 million ← year 2010 Actual data for year 2010 = 243 million 6c) Comparison: The model predicts more than the actual data by 13 million. d) d) Use the model from 6c: ( P ( t ) = 150 $e^{0.01777t}$ Predict year 2020 – I think the model will continue to be greater than the actual data. 2020 – 1980 = 40 = t ← year 2020 P ( t ) = 150 $e^{0.01777t}$ P ( 40 ) = 150 $e^{0.01777( 40 )}$ 6d) P ( 40 ) = 305.3 million ← year 2020 Actual data for year 2020 = 273.5 million ( Wikipedia, retrieved on May 18, 2022) 6d) Comparison: The model predicts more than the actual data by 31.8 million.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.