Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 3 - Section 3.11 - Hyperbolic Functions - 3.11 Exercises - Page 265: 54

Answer

(a) $\lim\limits_{t \to \infty}v(t) = \sqrt{\frac{mg}{k}}$ (b) In a belly-to-earth position, the terminal velocity is $33.8~m/s$ In a feet-first position, the terminal velocity is $93.7~m/s$

Work Step by Step

(a) Consider $~~tanh(t\sqrt{\frac{g~k}{m}})$: $tanh(t\sqrt{\frac{g~k}{m}}) = \frac{sinh(t\sqrt{\frac{g~k}{m}})}{cosh(t\sqrt{\frac{g~k}{m}})}$ $tanh( t\sqrt{\frac{g~k}{m}} ) = \frac{\frac{e^{t\sqrt{\frac{g~k}{m}}}-e^{-t\sqrt{\frac{g~k}{m}}}}{2}} {\frac{e^{t\sqrt{\frac{g~k}{m}}}+e^{-t\sqrt{\frac{g~k}{m}}}}{2}}$ $tanh( t\sqrt{\frac{g~k}{m}} ) = \frac{e^{t\sqrt{\frac{g~k}{m}}}-e^{-t\sqrt{\frac{g~k}{m}}}} {e^{t\sqrt{\frac{g~k}{m}}}+e^{-t\sqrt{\frac{g~k}{m}}}}$ When $t$ is very large, then $e^{-t\sqrt{\frac{g~k}{m}}} \approx 0$ Then: $\lim\limits_{t \to \infty} tanh(t\sqrt{\frac{g~k}{m}}) = \frac{e^{t\sqrt{\frac{g~k}{m}}}-0}{e^{t\sqrt{\frac{g~k}{m}}}+0} = 1$ Thus: $\lim\limits_{t \to \infty}v(t) = \lim\limits_{t \to \infty} \sqrt{\frac{mg}{k}}~tanh(t\sqrt{\frac{g~k}{m}}) = \sqrt{\frac{mg}{k}}$ (b) In a belly-to-earth position, we can find the terminal velocity: $v = \sqrt{\frac{mg}{k}}$ $v = \sqrt{\frac{(60)(9.8)}{0.515}}$ $v = 33.8~m/s$ In a feet-first position, we can find the terminal velocity: $v = \sqrt{\frac{mg}{k}}$ $v = \sqrt{\frac{(60)(9.8)}{0.067}}$ $v = 93.7~m/s$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.