Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 11 - Section 11.6 - Absolute Convergence and the Ratio and Root Tests - 11.6 Exercises - Page 743: 9

Answer

The series diverges.

Work Step by Step

Apply the ratio test. $$\lim\limits_{n \to \infty} \frac{a_{n+1}}{a_{n}}$$ If $\lim\limits_{n \to \infty} \frac{a_{n+1}}{a_{n}} = L \lt 1$, then the series is absolutely convergent. If $\lim\limits_{n \to \infty} \frac{a_{n+1}}{a_{n}} = L \gt 1$ or $L=\infty$, then the series is divergent. If $\lim\limits_{n \to \infty} \frac{a_{n+1}}{a_{n}} = L = 1$, then the Ratio Test is inconclusive, so no conclusion can be drawn about the series' convergence. Plugging in values, we get: $\lim\limits_{n \to \infty} \frac{3^{n+1}}{2^{n+1}(n+1)^{3}} \times \frac{2^{n}n^{3}}{3^{n}}$ After simplifying exponents, we get: $\lim\limits_{n \to \infty} \frac{3n^{3}}{2^{n}(n+1)^{3}}$ Expanding the denominator and evaluating, it results in: $\lim\limits_{n \to \infty} \frac{3n^{3}}{2(n^{3}+3n^{2}+3n+1)}$ = $\frac{3}{2} \gt 1$ Thus, by the Ratio Test, the series diverges.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.