Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 11 - Section 11.4 - The Comparison Tests - 11.4 Exercises - Page 731: 32

Answer

Divergent

Work Step by Step

To use the Direct Comparison Test, we need a known series $\Sigma_{n=1}^{\infty}b_{n}$ for the purpose of comparison. We will choose $b_{n}=\frac{1}{n}$ The Comparison Test states that the p-series $\sum_{n=1}^{\infty}a_{n}$ is convergent if $p\gt 1$ and divergent if $p\leq 1$. Now, $a_{n}=\frac{1}{n^{1+\frac{1}{n}}}=\frac{1}{n.n^{\frac{1}{n}}}$ and $b_{n}=\frac{1}{n}$ $\lim\limits_{n \to \infty}\frac{a_{n}}{b_{n}}=\lim\limits_{n \to \infty}\frac{\frac{1}{n.n^{\frac{1}{n}}}}{\frac{1}{n}}$ $=\lim\limits_{n \to \infty}\frac{n}{n.n^{{1/n}}}$ $=\lim\limits_{n \to \infty}\frac{1}{n^{{1/n}}}$ $=\frac{1}{1}$ ( Since, $\lim\limits_{n \to \infty}n^{1/n}=1$ by L-Hospital's Rule) $=1 \ne 0 \ne \infty$ The given series diverges by the Limit Comparison Test, because $\Sigma _{n=1}^{\infty}\frac{1}{n}$ is diverging.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.