Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 11 - Section 11.4 - The Comparison Tests - 11.4 Exercises - Page 731: 26

Answer

Convergent

Work Step by Step

The Comparison Test states that the p-series $\sum_{n=1}^{\infty}\frac{1}{n^{p}}$ is convergent if $p\gt 1$ and divergent if $p\leq 1$. Use Limit Comparison Test with $a_{n}=\frac{1}{{n\sqrt {(n^{2}-1)}}}$ and $b_{n}=\frac{1}{n\sqrt {n^{2}}}$ $\lim\limits_{n \to \infty}\frac{a_{n}}{b_{n}}=\lim\limits_{n \to \infty}\frac{\frac{1}{{n\sqrt {(n^{2}-1)}}}}{\frac{1}{n\sqrt {n^{2}}}}$ $=\lim\limits_{n \to \infty}\frac{\sqrt {n^{2}}}{\sqrt {n^{2}-1}}$ $=\lim\limits_{n \to \infty}\frac{n}{n\sqrt {1-\frac{1}{n^{2}}}}$ $=\lim\limits_{n \to \infty}\frac{1}{\sqrt {1-\frac{1}{n^{2}}}}$ $=\lim\limits_{n \to \infty}\frac{1}{\sqrt {1-0}}$ $=1$ $\Sigma_{n=1}^{\infty}\frac{1}{n\sqrt {n^{2}}}$ is convergent because a $p-$series with $p=2 \gt 1$ is convergent; thus the series $\Sigma_{n=1}^{\infty}\frac{1}{{n\sqrt {(n^{2}-1)}}}$ also converges.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.