Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

APPENDIX E - Sigma Notation - E Exercises: 42

Answer

$|\sum\limits_{i =1}^{n}a_{i}| \leq \sum\limits_{i =1}^{n}|a_{i}|$

Work Step by Step

$|\sum\limits_{i =1}^{n}a_{i}| \leq \sum\limits_{i =1}^{n}|a_{i}|$ Use the triangular inequality $|a+b|\leq |a|+|b|$ Expand the summation on both sides. $a_{1}+a_{2}+....+a_{n}=a_{1}+a_{2}+....+a_{n}$ Take the absolute values. $|a_{1}+a_{2}+....+a_{n}|=|a_{1}+a_{2}+....+a_{n}|$ Thus, $|a_{1}+a_{2}+....+a_{n}|\leq|a_{1}|+|a_{2}|+....+|a_{n}|$ (Triangular inequality $|a+b|\leq |a|+|b|$) Hence, $|\sum\limits_{i =1}^{n}a_{i}| \leq \sum\limits_{i =1}^{n}|a_{i}|$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.