Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 8 - Sequences and Infinite Series - 8.4 The Divergence and Integral Tests - 8.4 Exercises - Page 638: 48

Answer

$\dfrac{65}{8}$

Work Step by Step

Re-write the given infinite series $\Sigma_{k=0}^{\infty} [\dfrac{1}{2} (0.2)^{k}+\dfrac{3}{2}(0.8)^{k}]$ as $\dfrac{1}{2} \Sigma_{k=0}^{\infty} (0.2)^{k}+ \dfrac{3}{2} \Sigma_{k=0}^{\infty} (0.8)^{k}$ Here, we can see that the series $\dfrac{1}{2} \Sigma_{k=0}^{\infty} (0.2)^{k}+ \dfrac{3}{2} \Sigma_{k=0}^{\infty} (0.8)^{k}$ shows a geometric series with common ratio $r=0.2\lt 1$ and $r=0.8 \lt 1$. So, the series is convergent. whose sum can be computed as: $\Sigma_{n=0}^{\infty} ar^n =a+ar+ar^2+ar^3+.....=\dfrac{a}{1-r}$ Now, $\dfrac{1}{2} \Sigma_{k=0}^{\infty} (0.2)^{k}+ \dfrac{3}{2} \Sigma_{k=0}^{\infty} (0.8)^{k} =\dfrac{1}{2} \times \dfrac{1}{1-0.2}+\dfrac{3}{2} \times \dfrac{1}{1-0.8} \\= \dfrac{5}{8}+ \dfrac{15}{2}\\=\dfrac{65}{8}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.