Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 7 - Integration Techniques - 7.8 Improper Integrals - 7.8 Exercises - Page 578: 16

Answer

$${\text{diverges}}$$

Work Step by Step

$$\eqalign{ & \int_0^\infty {\frac{p}{{\root 5 \of {{p^2} + 1} }}dp} \cr & {\text{definition of improper integral}} \cr & \int_0^\infty {\frac{p}{{\root 5 \of {{p^2} + 1} }}dp} = \mathop {\lim }\limits_{b \to \infty } \int_0^b {\frac{p}{{\root 5 \of {{p^2} + 1} }}} \cr & = \mathop {\lim }\limits_{b \to \infty } \int_0^b {{{\left( {{p^2} + 1} \right)}^{ - 1/5}}pdp} \cr & {\text{evaluate the integral}} \cr & = \frac{1}{2}\mathop {\lim }\limits_{b \to \infty } \left. {\left( {\frac{{{{\left( {{p^2} + 1} \right)}^{4/5}}}}{{4/5}}} \right)} \right|_0^b \cr & = \frac{5}{8}\mathop {\lim }\limits_{b \to \infty } \left. {\left( {{{\left( {{p^2} + 1} \right)}^{4/5}}} \right)} \right|_0^b \cr & = \frac{5}{8}\mathop {\lim }\limits_{b \to \infty } \left( {{{\left( {{b^2} + 1} \right)}^{4/5}} - {{\left( {{0^2} + 1} \right)}^{4/5}}} \right) \cr & = \frac{5}{8}\mathop {\lim }\limits_{b \to \infty } \left( {{{\left( {{b^2} + 1} \right)}^{4/5}} - 1} \right) \cr & {\text{evaluate the limit}} \cr & = \frac{5}{8}\left( {{{\left( {{\infty ^2} + 1} \right)}^{4/5}} - 1} \right) \cr & = \infty \cr & {\text{diverges}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.