Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 7 - Integration Techniques - 7.6 Other Integration Strategies - 7.6 Exercises - Page 555: 35

Answer

$$ - \frac{{{{\tan }^{ - 1}}{x^3}}}{{3{x^3}}} + \frac{1}{6}\ln \left| {\frac{x}{{{{\left( {{x^6} + 1} \right)}^{1/6}}}}} \right| + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{{{\tan }^{ - 1}}{x^3}}}{{{x^4}}}} dx \cr & = \int {{x^{ - 4}}{{\tan }^{ - 1}}{x^3}} dx \cr & {\text{substitute }}u = {x^3},{\text{ }}du = 3{x^2}dx,{\text{ }}dx = \frac{{du}}{{3{x^2}}} \cr & = \int {{x^{ - 4}}{{\tan }^{ - 1}}u} \left( {\frac{{du}}{{3{x^2}}}} \right) = \frac{1}{3}\int {{x^{ - 6}}{{\tan }^{ - 1}}u} du \cr & = \frac{1}{3}\int {{{\left( {{x^3}} \right)}^{ - 2}}{{\tan }^{ - 1}}u} du \cr & = \frac{1}{3}\int {{u^{ - 2}}{{\tan }^{ - 1}}u} du \cr & {\text{A matching integral in a table of integrals at the end of the book is the }} \cr & {\text{formula }}106 \cr & \int {{u^n}{{\tan }^{ - 1}}u} du = \frac{1}{{n + 1}}\left( {{u^{n + 1}}{{\tan }^{ - 1}}u - \int {\frac{{{u^{n + 1}}}}{{{u^2} + 1}}du} } \right) \cr & n = - 2 \cr & = \frac{1}{3}\left( {\frac{1}{{ - 2 + 1}}} \right)\left( {{u^{ - 2 + 1}}{{\tan }^{ - 1}}u - \int {\frac{{{u^{ - 2 + 1}}}}{{{u^2} + 1}}du} } \right) \cr & = - \frac{1}{3}\left( {{u^{ - 1}}{{\tan }^{ - 1}}u - \int {\frac{{{u^{ - 1}}}}{{{u^2} + 1}}du} } \right) \cr & = - \frac{1}{3}{u^{ - 1}}{\tan ^{ - 1}}u + \frac{1}{3}\int {\frac{1}{{u\left( {{u^2} + 1} \right)}}du} \cr & {\text{Formula 85 }}\int {\frac{{du}}{{u\left( {{u^2} + {a^2}} \right)}} = \frac{1}{{2{a^2}}}\ln \left| {\frac{{{u^2}}}{{{a^2} + {u^2}}}} \right|} + C \cr & = - \frac{1}{3}{u^{ - 1}}{\tan ^{ - 1}}u + \frac{1}{{6{a^2}}}\ln \left| {\frac{{{u^2}}}{{{a^2} + {u^2}}}} \right| + C \cr & = - \frac{1}{3}{u^{ - 1}}{\tan ^{ - 1}}u + \frac{1}{6}\ln \left| {\frac{{{u^2}}}{{{u^2} + 1}}} \right| + C \cr & {\text{with }}u = {x^3} \cr & = - \frac{1}{3}{\left( {{x^3}} \right)^{ - 1}}{\tan ^{ - 1}}{x^3} + \frac{1}{6}\ln \left| {\frac{{{{\left( {{x^3}} \right)}^2}}}{{{{\left( {{x^3}} \right)}^2} + 1}}} \right| + C \cr & = - \frac{{{{\tan }^{ - 1}}{x^3}}}{{3{x^3}}} + \frac{1}{6}\ln \left| {\frac{{{x^6}}}{{{x^6} + 1}}} \right| + C \cr & = - \frac{{{{\tan }^{ - 1}}{x^3}}}{{3{x^3}}} + \ln \left| {\frac{{{x^{6/6}}}}{{{{\left( {{x^6} + 1} \right)}^{1/6}}}}} \right| + C \cr & = - \frac{{{{\tan }^{ - 1}}{x^3}}}{{3{x^3}}} + \frac{1}{6}\ln \left| {\frac{x}{{{{\left( {{x^6} + 1} \right)}^{1/6}}}}} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.