Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 7 - Integration Techniques - 7.5 Partial Fractions - 7.5 Exercises: 91

Answer

\[\, = - \cot \,\left( {\frac{x}{2}} \right) + C\]

Work Step by Step

\[\begin{gathered} \int_{}^{} {\frac{{dx}}{{1 - \cos x}}} \hfill \\ \hfill \\ set\,\,x = 2{\tan ^{ - 1}}\,\left( u \right)\,\,\,\,\,\,then\,\,dx = 2\left( {\frac{{du}}{{1 + {u^2}}}} \right) \hfill \\ and\,\,\cos x = \frac{{1 - {u^2}}}{{1 + {u^2}}} \hfill \\ \hfill \\ substitute\,\,for\,dx{\text{ and }}\cos x \hfill \\ \hfill \\ \int_{}^{} {\frac{{dx}}{{1 - \cos x}}} \, = \int_{}^{} {\frac{{\frac{{2du}}{{1 + {u^2}}}}}{{1 - \frac{{1 - {u^2}}}{{1 + {u^2}}}}}} \, = \hfill \\ \hfill \\ simplify \hfill \\ \hfill \\ \int_{}^{} {\frac{1}{{{u^2}}}\,du} \hfill \\ \hfill \\ integrating \hfill \\ = - \frac{1}{u} + C \hfill \\ \hfill \\ substitute\,\,for\,\,\,u \hfill \\ \hfill \\ \, = - \cot \,\left( {\frac{x}{2}} \right) + C \hfill \\ \end{gathered} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.