Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 7 - Integration Techniques - 7.5 Partial Fractions - 7.5 Exercises - Page 550: 83

Answer

$$\ln \left( {\frac{{{x^2}}}{{{x^2} + 1}}} \right) + \frac{1}{{{x^2} + 1}} + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{2}{{x{{\left( {{x^2} + 1} \right)}^2}}}} dx \cr & {\text{Decompose }}\frac{2}{{x{{\left( {{x^2} + 1} \right)}^2}}}{\text{ into partial fractions}} \cr & \frac{2}{{x{{\left( {{x^2} + 1} \right)}^2}}} = \frac{A}{x} + \frac{{Bx + C}}{{{x^2} + 1}} + \frac{{Dx + E}}{{{{\left( {{x^2} + 1} \right)}^2}}} \cr & {\text{Multiply both sides by }}x{\left( {{x^2} + 1} \right)^2} \cr & 2 = A{\left( {{x^2} + 1} \right)^2} + x\left( {{x^2} + 1} \right)\left( {Bx + C} \right) + x\left( {Dx + E} \right) \cr & 2 = A\left( {{x^4} + 2{x^2} + 1} \right) + \left( {{x^3} + x} \right)\left( {Bx + C} \right) + D{x^2} + Ex \cr & 2 = A{x^4} + 2A{x^2} + A + B{x^4} + C{x^3} + B{x^2} + Cx + D{x^2} + Ex \cr & {\text{Group like terms}} \cr & 2 = \left( {A + B} \right){x^4} + C{x^3} + \left( {2A + B + D} \right){x^2} + \left( {C + E} \right)x + A \cr & {\text{We obtain the system of linear equations}} \cr & A + B = 0,\,\,\,\,C = 0,\,\,\,\,2A + B + D = 0,\,\,\,\,C + E = 0,\,\,A = 2 \cr & {\text{Solving the system we obtain}} \cr & A = 2,\,\,\,B = - 2,\,\,\,\,C = 0,\,\,\,\,D = - 2,\,\,\,\,E = 0 \cr & {\text{Therefore,}} \cr & \frac{2}{{x{{\left( {{x^2} + 1} \right)}^2}}} = \frac{2}{x} - \frac{{2x}}{{{x^2} + 1}} - \frac{{2x}}{{{{\left( {{x^2} + 1} \right)}^2}}} \cr & \cr & \int {\frac{2}{{x{{\left( {{x^2} + 1} \right)}^2}}}} dx = \int {\left[ {\frac{2}{x} - \frac{{2x}}{{{x^2} + 1}} - \frac{{2x}}{{{{\left( {{x^2} + 1} \right)}^2}}}} \right]} dx \cr & = \int {\frac{2}{x}} dx - \int {\frac{{2x}}{{{x^2} + 1}}} dx - \int {{{\left( {{x^2} + 1} \right)}^{ - 2}}\left( {2x} \right)dx} \cr & {\text{Integrate}} \cr & = 2\ln \left| x \right| - \ln \left( {{x^2} + 1} \right) - \frac{{{{\left( {{x^2} + 1} \right)}^{ - 1}}}}{{ - 1}} + C \cr & = \ln {x^2} - \ln \left( {{x^2} + 1} \right) + \frac{1}{{{x^2} + 1}} + C \cr & = \ln \left( {\frac{{{x^2}}}{{{x^2} + 1}}} \right) + \frac{1}{{{x^2} + 1}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.