Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 7 - Integration Techniques - 7.3 Trigonometric Integrals - 7.3 Exercises: 28

Answer

$$ - \ln \left| {\cos \theta } \right| - \frac{{{{\tan }^2}\theta }}{2} + C$$

Work Step by Step

$$\eqalign{ & \int {{{\tan }^3}\theta d\theta } \cr & {\text{split off }}\tan \theta \cr & = \int {{{\tan }^2}\theta \tan \theta d\theta } \cr & {\text{pythagorean identity}} \cr & = \int {\left( {1 - {{\sec }^2}\theta } \right)} \tan \theta d\theta \cr & {\text{Split }} \cr & = \int {\tan \theta } d\theta - \int {{{\sec }^2}\theta } \tan \theta d\theta \cr & {\text{evaluate the integral}} \cr & = - \ln \left| {\cos \theta } \right| - \frac{{{{\tan }^2}\theta }}{2} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.