Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 7 - Integration Techniques - 7.2 Integration by Parts - 7.2 Exercises - Page 520: 11

Answer

$$\frac{{2{{\left( {x + 1} \right)}^{3/2}}}}{3} - 2{\left( {x + 1} \right)^{1/2}} + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{x}{{\sqrt {x + 1} }}} dx \cr & {\text{substitute }}u = x + 1,{\text{ }}x = u - 1,{\text{ }}du = dx, \cr & = \int {\frac{x}{{\sqrt {x + 1} }}} dx = \int {\frac{{u - 1}}{{\sqrt u }}} du \cr & \operatorname{simplify} \cr & = \int {\frac{{u - 1}}{{{u^{1/2}}}}} du = \int {\left( {\frac{u}{{{u^{1/2}}}} - \frac{1}{{{u^{1/2}}}}} \right)} du \cr & = \int {\left( {{u^{1/2}} - {u^{ - 1/2}}} \right)} du \cr & {\text{find the antiderivative}} \cr & = \frac{{{u^{3/2}}}}{{3/2}} - \frac{{{u^{1/2}}}}{{1/2}} + C \cr & = \frac{{2{u^{3/2}}}}{3} - 2{u^{1/2}} + C \cr & {\text{replace back}}\,\,\,u = x + 1 \cr & = \frac{{2{{\left( {x + 1} \right)}^{3/2}}}}{3} - 2{\left( {x + 1} \right)^{1/2}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.