Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 7 - Integration Techniques - 7.2 Integration by Parts - 7.2 Exercises - Page 520: 1

Answer

$${\text{The product rule}}$$

Work Step by Step

$$\eqalign{ & {\text{The integration by parts is based on the product rule of derivatives}}{\text{.}} \cr & {\text{Demostration:}} \cr & {\text{Let the functions }}u\left( x \right){\text{ and }}v\left( x \right){\text{ then,}} \cr & \frac{d}{{dx}}\left[ {u\left( x \right)v\left( x \right)} \right] = u\left( x \right)v'\left( x \right) + v\left( x \right)u'\left( x \right) \cr & d\left[ {u\left( x \right)v\left( x \right)} \right] = \left[ {u\left( x \right)v'\left( x \right) + v\left( x \right)u'\left( x \right)} \right]dx \cr & {\text{By integrating both sides}},{\text{ we can write this rule in terms of an }} \cr & {\text{indefinite integral}}: \cr & u\left( x \right)v\left( x \right) = \int {\left[ {u\left( x \right)v'\left( x \right) + v\left( x \right)u'\left( x \right)} \right]} dx \cr & {\text{Rearranging this expression in the form}} \cr & \int {u\left( x \right)} \underbrace {v'\left( x \right)dx}_{dv} = u\left( x \right)v\left( x \right) - \int {v\left( x \right)\underbrace {u'\left( x \right)dx}_{du}} \cr & \int u dv = uv - \int {vdu} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.