Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 7 - Integration Techniques - 7.1 Basic Approaches - 7.1 Exercises: 39

Answer

$\int\frac{dx}{sec(x)-1} = -csc(x)-cot(x)-x+C$

Work Step by Step

$\int\frac{dx}{sec(x)-1} $ $\int(\frac{dx}{sec(x)-1} \times \frac{sec(x)+1}{sec(x)+1}) = \int\frac{sec(x)+1}{sec^2(x)-1}dx$ = $\int\frac{sec(x)}{sec^2(x)-1}dx + \int\frac{1}{sec^2(x)-1}dx$ $sec^2(x) = tan^2(x)+1$ $\int\frac{sec(x)}{tan^2(x)}dx + \int\frac{1}{tan^2(x)}dx = \int cot(x)csc(x)dx + \int cot^2(x)dx = \int cot(x)csc(x)dx + \int [csc^2(x)-1]dx = (-csc(x) + C) + (-cot(x) - x + C) = -csc(x)-cot(x)-x+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.