Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 6 - Applications of Integration - 6.8 Logarithmic and Exponential - 6.8 Exercises: 61

Answer

$$\frac{{{{10}^{{x^3}}}}}{{3\ln 10}} + C$$

Work Step by Step

$$\eqalign{ & \int {{x^2}{{10}^{{x^3}}}} dx \cr & {\text{substitute }}u = {x^3},{\text{ }}du = 3{x^2}dx \cr & \int {{x^2}{{10}^{{x^3}}}dx} = \frac{1}{3}\int {{{10}^u}du} \cr & {\text{find the antiderivative}} \cr & {\text{by the formula }}\int {{a^u}} du = \frac{{{a^u}}}{{\ln a}} + C \cr & {\text{letting }}a = 10 \cr & = \frac{{{{10}^u}}}{{3\ln 10}} + C \cr & = \frac{{{{10}^{{x^3}}}}}{{3\ln 10}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.