Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 6 - Applications of Integration - 6.5 Length of Curves - 6.5 Exercises - Page 450: 36

Answer

$$L = \int_0^\pi {\sqrt {1 + {{\sin }^2}x} dx} $$

Work Step by Step

$$\eqalign{ & y = f\left( x \right) = \int_0^x {\sin t} dt,{\text{ On the interval }}\left[ {0,\pi } \right] \cr & {\text{Differentiate}} \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {\int_0^x {\sin t} dt} \right] \cr & {\text{Using the Fundamental Theorem Of Calculus aPart 1}} \cr & \frac{{dy}}{{dx}} = \sin x \cr & {\text{Use the formula }}L = \int_c^d {\sqrt {1 + {{\left( {\frac{{dy}}{{dx}}} \right)}^2}} d} x \cr & L = \int_0^\pi {\sqrt {1 + {{\left( {\sin x} \right)}^2}} dx} \cr & {\text{Simplifying}} \cr & L = \int_0^\pi {\sqrt {1 + {{\sin }^2}x} dx} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.