Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 6 - Applications of Integration - 6.4 Volume by Shells - 6.4 Exercises - Page 443: 27

Answer

$$V = 24\pi $$

Work Step by Step

$$\eqalign{ & {\text{From the graph of the region shown below}}{\text{, we have the points}} \cr & \left( {0,8} \right){\text{ and }}\left( {3,0} \right) \cr & {\text{The equation of the line is }} \cr & y - {y_1} = m\left( {x - {x_1}} \right) \cr & y - 8 = - \frac{8}{3}\left( {x - 0} \right) \cr & y = - \frac{8}{3}x + 8 \cr & {\text{Use the Shell method about the }}y{\text{ - axis}} \cr & V = \int_c^d {2\pi x\left[ {f\left( x \right) - g\left( x \right)} \right]} dx \cr & {\text{From the graph we can see that}} \cr & - \frac{8}{3}x + 8 > 0{\text{ on the interval }}\left[ {0,8} \right] \cr & {\text{Therefore}}{\text{,}} \cr & V = \int_0^3 {2\pi x\left( { - \frac{8}{3}x + 8} \right)} dx \cr & V = 2\pi \int_0^3 {\left( { - \frac{8}{3}{x^2} + 8x} \right)} dx \cr & {\text{Integrating}} \cr & V = 2\pi \left[ { - \frac{8}{9}{x^3} + 4{x^2}} \right]_0^3 \cr & V = 2\pi \left[ { - \frac{8}{9}{{\left( 3 \right)}^3} + 4{{\left( 3 \right)}^2}} \right] - 2\pi \left[ { - \frac{8}{9}{{\left( 0 \right)}^3} + 4{{\left( 0 \right)}^2}} \right] \cr & {\text{Simplifying}} \cr & V = 2\pi \left[ {12} \right] - 2\pi \left[ 0 \right] \cr & V = 24\pi \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.