Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 6 - Applications of Integration - 6.3 Volume by Slicing - 6.3 Exercises - Page 432: 59

Answer

$$V = \frac{{49}}{2}\pi $$

Work Step by Step

$$\eqalign{ & {\text{Let the functions}}{\text{, }}y = \ln x,{\text{ }}y = \ln {x^2},{\text{ }}x = 0{\text{ and }}x = \ln 4 \cr & y = \ln x,{\text{ }} \to x = {e^y} \cr & y = \ln {x^2}{\text{ }} \to x = {e^{y/2}} \cr & {\text{The graph of the region }}R{\text{ is shown below}}{\text{.}} \cr & {\text{From the graph we can note that the interval of integration}} \cr & {\text{is from }}y = 0{\text{ to }}y = \ln 8 \cr & {\text{Revolving the region about the }}y{\text{ - axis}}{\text{, using the washer }} \cr & {\text{method}}{\text{.}} \cr & V = \int_c^d {\pi \left[ {p{{\left( y \right)}^2} - q{{\left( y \right)}^2}} \right]} dy \cr & {e^y} \geqslant {e^{y/2}}{\text{ on the interval }}\left[ {0,\ln 8} \right] \cr & {\text{We can represent the volume as:}} \cr & V = \int_0^{\ln 8} {\pi \left[ {{{\left( {{e^y}} \right)}^2} - {{\left( {{e^{y/2}}} \right)}^2}} \right]} dy \cr & V = \int_0^{\ln 8} {\pi \left( {{e^{2y}} - {e^y}} \right)} dy \cr & {\text{Integrating}} \cr & V = \pi \left[ {\frac{1}{2}{e^{2y}} - {e^y}} \right]_0^{\ln 8} \cr & V = \pi \left[ {\frac{1}{2}{e^{2\left( {\ln 8} \right)}} - {e^{\ln 8}}} \right] - \pi \left[ {\frac{1}{2}{e^{2\left( 0 \right)}} - {e^0}} \right] \cr & V = \pi \left( {32 - 8} \right) - \pi \left( { - \frac{1}{2}} \right) \cr & V = \frac{{49}}{2}\pi \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.