Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 6 - Applications of Integration - 6.3 Volume by Slicing - 6.3 Exercises - Page 432: 57

Answer

$$V = \frac{{\left( {{e^4} - 1} \right)\pi }}{2}$$

Work Step by Step

$$\eqalign{ & {\text{Let the functions}}{\text{, }}y = {e^x},{\text{ }}y = 0,{\text{ }}x = 0,{\text{ }}x = 2 \cr & {\text{The graph of the region }}R{\text{ is shown below}}{\text{.}} \cr & {\text{From the graph we can note that the interval of integration}} \cr & {\text{is from }}\underbrace {\left[ {0,2} \right]}_{\left[ {a,b} \right]} \cr & {\text{Revolving the region about the }}x{\text{ - axis}}{\text{, using the Disk Method }} \cr & {\text{about the }}x{\text{ - axis }} \cr & V = \int_a^b {\pi f{{\left( x \right)}^2}} dx \cr & {\text{We can represent the volume as:}} \cr & V = \int_0^2 {\pi {{\left( {{e^x}} \right)}^2}} dx \cr & V = \pi \int_0^2 {{e^{2x}}} dx \cr & {\text{Integrating}} \cr & V = \pi \left[ {\frac{1}{2}{e^{2x}}} \right]_0^2 \cr & V = \frac{\pi }{2}\left[ {{e^{2x}}} \right]_0^2 \cr & V = \frac{\pi }{2}\left[ {{e^{2\left( 2 \right)}} - {e^{2\left( 0 \right)}}} \right] \cr & V = \frac{\pi }{2}\left[ {{e^4} - 1} \right] \cr & V = \frac{{\left( {{e^4} - 1} \right)\pi }}{2} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.