Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 6 - Applications of Integration - 6.2 Regions Between Curves - 6.2 Exercises - Page 417: 25

Answer

$$A = \frac{{125}}{2}$$

Work Step by Step

$$\eqalign{ & {\text{Calculate the intersecion points}} \cr & x = x \cr & {y^2} - 3y + 12 = - 2{y^2} - 6y + 30 \cr & 3{y^2} + 3y - 18 = 0 \cr & {y^2} + y - 6 = 0 \cr & \left( {y + 3} \right)\left( {y - 2} \right) = 0 \cr & {y_1} = - 3,\,\,\,{y_2} = 2 \cr & {\text{The area of the region is given by}} \cr & A = \int_{ - 3}^2 {\left[ {\left( { - 2{y^2} - 6y + 30} \right) - \left( {{y^2} - 3y + 12} \right)} \right]dy} \cr & A = \int_{ - 3}^2 {\left( { - 2{y^2} - 6y + 30 - {y^2} + 3y - 12} \right)dy} \cr & A = \int_{ - 3}^2 {\left( { - 3{y^2} - 3y + 18} \right)dy} \cr & {\text{Integrating}} \cr & A = \left[ { - {y^3} - \frac{{3{y^2}}}{2} + 18y} \right]_{ - 3}^2 \cr & A = \left[ { - {{\left( {2} \right)}^3} - \frac{{3{{\left( {2} \right)}^2}}}{2} + 18\left( {2} \right)} \right] - \left[ { - {{\left( { - 3} \right)}^3} - \frac{{3{{\left( { - 3} \right)}^2}}}{2} + 18\left( { - 3} \right)} \right] \cr & A = 22 - \left( { - \frac{{81}}{2}} \right) \cr & A = \frac{{125}}{2} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.