Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 6 - Applications of Integration - 6.10 Hyperbolic Functions - 6.10 Exercises - Page 503: 37

Answer

$$\frac{{{{\cosh }^4}3 - 1}}{{12}}$$

Work Step by Step

$$\eqalign{ & \int_0^1 {{{\cosh }^3}3x} \sinh 3xdx \cr & {\text{set }}u = \cosh 3x{\text{ }}\,\,\,\,\,{\text{then }}\,\,\,\,du = 3\sinh 3xdx,\,\,\,\,\,\,\,\,\,\,\sinh 3xdx = \frac{1}{3}du \cr & {\text{switch the limits of integration}} \cr & u = \cosh 3x,\,\,\,\,x = 0 \to u = 1 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 1 \to u = \cosh 3 \cr & {\text{use the change of variable}} \cr & \int_0^1 {{{\cosh }^3}3x} \sinh 3xdx = \int_1^{\cosh 3} {{u^3}\left( {\frac{1}{3}du} \right)} \cr & = \frac{1}{3}\int_1^{\cosh 3} {{u^3}du} \cr & {\text{integrate and evaluate the limits}} \cr & = \frac{1}{3}\left( {\frac{{{u^4}}}{4}} \right)_1^{\cosh 3} \cr & = \frac{1}{{12}}\left( {{u^4}} \right)_1^{\cosh 3} \cr & = \frac{1}{{12}}\left( {{{\left( {\cosh 3} \right)}^4} - {{\left( 1 \right)}^4}} \right) \cr & = \frac{{{{\cosh }^4}3 - 1}}{{12}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.