Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 6 - Applications of Integration - 6.1 Velocity and Net Change - 6.1 Exercises - Page 409: 53

Answer

$$v = \frac{2}{3}{\text{m/s}}$$

Work Step by Step

$$\eqalign{ & v\left( t \right) = 1 - \frac{{{t^2}}}{{16}},{\text{ for 0}} \leqslant t \leqslant 4 \cr & {\text{The distance traveled by the object between }}t = a{\text{ and }}t = b, \cr & b > a{\text{ is }}\int_a^b {\left| {v\left( t \right)} \right|} dt.{\text{ }}\left( {{\text{See page 399}}} \right) \cr & {\text{Therefore}} \cr & {\text{Let }}{d_t}{\text{ the distance traveled}}{\text{, }}a = 0{\text{ and }}b = 4 \cr & {d_t} = \int_0^4 {\left| {1 - \frac{{{t^2}}}{{16}}} \right|} dt \cr & {\text{By the definition of absolute value}} \cr & {d_t} = \int_0^4 {\left( {1 - \frac{{{t^2}}}{{16}}} \right)} dt \cr & {\text{Integrating}} \cr & {d_t} = \left[ {t - \frac{{{t^3}}}{{48}}} \right]_0^4 \cr & {d_t} = \left[ {\left( 4 \right) - \frac{{{{\left( 4 \right)}^3}}}{{48}}} \right] - \left[ {\left( 0 \right) - \frac{{{{\left( 0 \right)}^3}}}{{48}}} \right] \cr & {d_t} = \frac{8}{3}{\text{m}} \cr & \cr & {\text{Recall from physics formulas that }}d = vt,{\text{ }} \cr & d = vt \cr & {\text{Then for a constant velocity}} \cr & v = \frac{d}{t} \cr & {\text{Let }}d = {d_t},{\text{ and }}t = \Delta t = 4 - 0 = 4{\text{s}} \cr & v = \frac{{\frac{8}{3}{\text{m}}}}{{{\text{4s}}}} \cr & v = \frac{2}{3}{\text{m/s}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.