Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 5 - Integration - 5.5 Substitution Rule - 5.5 Exercises - Page 393: 111

Answer

$$\sqrt {17} - 4$$

Work Step by Step

$$\eqalign{ & \int_0^{\pi /2} {\frac{{\cos \theta \sin \theta }}{{\sqrt {{{\cos }^2}\theta + 16} }}} d\theta \cr & {\text{set }}u = \cos \theta ,\,\,\,\,du = - \sin \theta d\theta \cr & {\text{switch the limits of integration using }}u = \cos \theta \cr & \theta = 0 \to 1 \cr & \theta = \pi /2 \to 0 \cr & {\text{use the substitution}} \cr & \int_0^{\pi /2} {\frac{{\cos \theta \sin \theta }}{{\sqrt {{{\cos }^2}\theta + 16} }}} d\theta = \int_1^0 {\frac{{ - udu}}{{\sqrt {{u^2} + 16} }}} \cr & \cr & {\text{use the substitution }}v = {u^2} + 16,\,\,\,\,\,\,\,\,dv = 2udu,\,\,\,\,\,\frac{1}{2}dv = udu \cr & {\text{switch the limits of integration using }}v = {u^2} + 16 \cr & u = 0 \to v = 16 \cr & u = 1 \to v = 17 \cr & {\text{use the substitution}} \cr & \int_1^0 {\frac{{ - udu}}{{\sqrt {{u^2} + 16} }}} = - \int_{17}^{16} {\frac{{\left( {1/2} \right)dv}}{{\sqrt v }}} \cr & = - \frac{1}{2}\int_{17}^{16} {{v^{ - 1/2}}} dv \cr & {\text{integrate}} \cr & = - \frac{1}{2}\left( {\frac{{{v^{1/2}}}}{{1/2}}} \right)_{17}^{16} + C \cr & = - \left( {\sqrt v } \right)_{17}^{16} + C \cr & {\text{evaluate the limits}} \cr & = - \sqrt {16} + \sqrt {17} \cr & = \sqrt {17} - 4 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.