Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 4 - Applications of the Derivative - 4.9 Antiderivatives - 4.9 Exercises - Page 238: 27

Answer

$$\frac{{25{s^3}}}{3} + 15{s^2} + 9s + C$$

Work Step by Step

$$\eqalign{ & \int {{{\left( {5s + 3} \right)}^2}} ds \cr & {\text{expanding the integrand}} \cr & = \int {\left( {25{s^2} + 30s + 9} \right)} ds \cr & {\text{by the power rule for indefinite integrals}} \cr & = \frac{{25{s^{2 + 1}}}}{{2 + 1}} + \frac{{30{s^{1 + 1}}}}{{1 + 1}} + 9s + C \cr & = \frac{{25{s^3}}}{3} + \frac{{30{s^2}}}{2} + 9s + C \cr & {\text{simplify}} \cr & = \frac{{25{s^3}}}{3} + 15{s^2} + 9s + C \cr & \cr & \cr & {\text{check the antiderivative by differentiation}} \cr & {\text{ = }}\frac{d}{{ds}}\left( {\frac{{25{s^3}}}{3} + 15{s^2} + 9s + C} \right) \cr & {\text{ = }}\frac{{25\left( 3 \right){s^2}}}{3} + 15\left( 2 \right)s + 9\left( 1 \right) + 0 \cr & {\text{ = }}25{s^2} + 30s + 9 \cr & {\text{factor}} \cr & = {\left( {5s + 3} \right)^2} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.