Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 4 - Applications of the Derivative - 4.9 Antiderivatives - 4.9 Exercises - Page 238: 25

Answer

$$\frac{{8x\sqrt x }}{3} - 8\sqrt x + C$$

Work Step by Step

$$\eqalign{ & \int {\left( {4\sqrt x - \frac{4}{{\sqrt x }}} \right)} dx \cr & {\text{use the radical property }}\sqrt x = {x^{1/2}} \cr & = \int {\left( {4{x^{1/2}} - \frac{4}{{{x^{1/2}}}}} \right)} dx \cr & = \int {\left( {4{x^{1/2}} - 4{x^{ - 1/2}}} \right)} dx \cr & {\text{by the power rule for indefinite integrals}} \cr & = \frac{{4{x^{1/2 + 1}}}}{{1/2 + 1}} - \frac{{4{x^{ - 1/2 + 1}}}}{{ - 1/2 + 1}} + C \cr & = \frac{{4{x^{3/2}}}}{{3/2}} - \frac{{4{x^{1/2}}}}{{1/2}} + C \cr & = \frac{{8{x^{3/2}}}}{3} - 8{x^{1/2}} + C \cr & = \frac{{8x\sqrt x }}{3} - 8\sqrt x + C \cr & \cr & \cr & {\text{check the antiderivative by differentiation}} \cr & {\text{ = }}\frac{d}{{dx}}\left( {\frac{{8{x^{3/2}}}}{3} - 8{x^{1/2}} + C} \right) \cr & {\text{ = }}\frac{8}{3}\left( {\frac{3}{2}} \right){x^{1/2}} - 8\left( {\frac{1}{2}} \right){x^{ - 1/2}} + 0 \cr & {\text{simplify}} \cr & {\text{ = }}4{x^{1/2}} - 4{x^{ - 1/2}} \cr & {\text{ = }}4\sqrt x - \frac{4}{{\sqrt x }} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.