Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.9 Derivatives of Logarithmic and Exponential Functions - 3.9 Exercises - Page 211: 52

Answer

$$\eqalign{ & {\text{Horizontal line at the point}}\left( {{e^{ - 2}},{e^{ - 2{e^{ - 1}}}}} \right) \cr & {\text{The horizontal line is }}y = {e^{ - 2{e^{ - 1}}}} \cr} $$

Work Step by Step

$$\eqalign{ & y = {x^{\sqrt x }} \cr & {\text{Use }}{b^x} = {e^{x\ln b}},{\text{ then}} \cr & y = {e^{\sqrt x \ln x}} \cr & {\text{Differentiating}} \cr & \frac{{dy}}{{dx}} = {e^{\sqrt x \ln x}}\frac{d}{{dx}}\left[ {\sqrt x \ln x} \right] \cr & \frac{{dy}}{{dx}} = {e^{\sqrt x \ln x}}\left[ {\sqrt x \left( {\frac{1}{x}} \right) + \frac{{\ln x}}{{2\sqrt x }}} \right] \cr & \frac{{dy}}{{dx}} = {x^{\sqrt x }}\left[ {\frac{1}{{\sqrt x }} + \frac{{\ln x}}{{2\sqrt x }}} \right] \cr & \frac{{dy}}{{dx}} = {x^{\sqrt x }}\left( {\frac{{2 + \ln x}}{{2\sqrt x }}} \right) \cr & \frac{{dy}}{{dx}} = \frac{1}{2}{x^{\sqrt x - 1}}\left( {2 + \ln x} \right) \cr & \cr & {\text{Set the derivative equal to 0}} \cr & \frac{1}{2}{x^{\sqrt x - 1}}\left( {2 + \ln x} \right) = 0 \cr & {x^{\sqrt x - 1}} = 0{\text{ or }}2 + \ln x = 0 \cr & {x^{\sqrt x - 1}}{\text{ is always positive}}{\text{, then}} \cr & 2 + \ln x = 0 \cr & \ln x = - 2 \cr & x = {e^{ - 2}} \cr & {\text{Then the function has a horizontal line at the point }} \cr & \left( {\frac{1}{{{e^2}}},{{\left( {\frac{1}{{{e^2}}}} \right)}^{\sqrt {{e^{ - 2}}} }}} \right) \cr & \left( {{e^{ - 2}},{e^{ - 2{e^{ - 1}}}}} \right) \cr & {\text{The horizontal line is }}y = {e^{ - 2{e^{ - 1}}}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.