Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 2 - Limits - 2.7 Precise Definitions of Limits - 2.7 Exercises - Page 121: 21

Answer

$$\delta = \varepsilon $$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{x \to 4} \frac{{{x^2} - 16}}{{x - 4}} = 8 \cr & {\text{By the precise definition of limits}} \cr & \mathop {\lim }\limits_{x \to a} f\left( x \right) = L \cr & {\text{if for any number }}\varepsilon {\text{ > 0 there is a corresponding number }}\delta {\text{ > 0}} \cr & {\text{such that}} \cr & \left| {f\left( x \right) - L} \right| < \varepsilon {\text{ whenever 0}} < \left| {x - a} \right| < \delta \cr & {\text{Therefore}} \cr & L = 8{\text{ and }}f\left( x \right) = \frac{{{x^2} - 16}}{{x - 4}} \cr & \left| {f\left( x \right) - 8} \right| < \varepsilon \cr & \left| {\frac{{{x^2} - 16}}{{x - 4}} - 8} \right| < \varepsilon \cr & {\text{Solving the inequality}} \cr & - \varepsilon < \frac{{{x^2} - 16}}{{x - 4}} - 8 < \varepsilon \cr & 8 - \varepsilon < \frac{{{x^2} - 16}}{{x - 4}} < 8 + \varepsilon \cr & {\text{Factoring}} \cr & 8 - \varepsilon < \frac{{\left( {x + 4} \right)\left( {x - 4} \right)}}{{x - 4}} < 8 + \varepsilon \cr & 8 - \varepsilon < x + 4 < 8 + \varepsilon \cr & 8 - \varepsilon - 8 < x + 4 - 8 < 8 + \varepsilon - 8 \cr & - \varepsilon < x - 4 < \varepsilon \cr & \left| {x - 4} \right| < \varepsilon \cr & {\text{Therefore}} \cr & \delta = \varepsilon \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.