Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 13 - Multiple Integration - 13.1 Double Integrals over Rectangular Regions - 13.1 Exercises - Page 970: 9

Answer

$$4$$

Work Step by Step

$$\eqalign{ & \int_1^3 {\int_0^{\pi /2} {x\sin y} } dydx \cr & = \int_1^3 {\left[ {\int_0^{\pi /2} {x\sin y} dy} \right]} dx \cr & = \int_1^3 {x\left[ {\int_0^{\pi /2} {\sin y} dy} \right]} dx \cr & {\text{solve the inner integral}}{\text{, treat }}x{\text{ as a constant}} \cr & \int_0^{\pi /2} {\sin y} dy = \left[ { - \cos y} \right]_0^{\pi /2} \cr & = \left[ {\cos y} \right]_{\pi /2}^0 \cr & {\text{evaluating the limits}} \cr & = \cos 0 - cos\pi /2 \cr & {\text{simplifying}} \cr & = 1 \cr & \cr & = \int_1^3 {x\left[ {\int_0^{\pi /2} {\sin y} dy} \right]} dx = \int_1^3 {x\left( 1 \right)} dx \cr & = \int_1^3 x dx \cr & {\text{integrating}} \cr & = \left( {\frac{{{x^2}}}{2}} \right)_1^3 \cr & {\text{evaluate}} \cr & = \frac{{{{\left( 3 \right)}^2}}}{2} - \frac{{{{\left( 1 \right)}^2}}}{2} \cr & = \frac{9}{2} - \frac{1}{2} \cr & = 4 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.