Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 13 - Multiple Integration - 13.1 Double Integrals over Rectangular Regions - 13.1 Exercises - Page 970: 12

Answer

$$1$$

Work Step by Step

$$\eqalign{ & \int_0^{\pi /2} {\int_0^1 {x\cos xy} } dydx \cr & = \int_0^{\pi /2} {\left[ {\int_0^1 {x\cos xy} dy} \right]} dx \cr & {\text{solve the inner integral}}{\text{, treat }}x{\text{ as a constant}} \cr & \int_0^1 {x\cos xy} dy = \left[ {\sin xy} \right]_0^1 \cr & {\text{evaluating the limits in the variable }}y \cr & = \sin x\left( 1 \right) - \sin 0 \cr & {\text{simplifying}} \cr & = \sin x \cr & \cr & = \int_0^{\pi /2} {\left[ {\int_0^1 {x\cos xy} dy} \right]} dx = \int_0^{\pi /2} {\sin x} dx \cr & {\text{integrating}} \cr & = \left( { - \cos x} \right)_0^{\pi /2} \cr & = \left( {\cos x} \right)_{\pi /2}^0 \cr & {\text{evaluate}} \cr & = \cos \left( 0 \right) - \cos \left( {\frac{\pi }{2}} \right) \cr & = 1 - 0 \cr & = 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.