Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 13 - Multiple Integration - 13.1 Double Integrals over Rectangular Regions - 13.1 Exercises - Page 970: 10

Answer

$$\frac{{38}}{3}$$

Work Step by Step

$$\eqalign{ & \int_1^3 {\int_1^2 {\left( {{y^2} + y} \right)} } dxdy \cr & = \int_1^3 {\left[ {\int_1^2 {\left( {{y^2} + y} \right)} dx} \right]} dy \cr & {\text{solve the inner integral}}{\text{, treat }}y{\text{ as a constant}} \cr & \int_1^2 {\left( {{y^2} + y} \right)} dx \cr & \left( {{y^2} + y} \right)\int_1^2 {dx} \cr & = \left( {{y^2} + y} \right)\left[ x \right]_1^2 \cr & {\text{evaluating the limits for }}x \cr & = \left( {{y^2} + y} \right)\left( {2 - 1} \right) \cr & = \left( {{y^2} + y} \right) \cr & \cr & \int_1^3 {\left[ {\int_1^2 {\left( {{y^2} + y} \right)} dx} \right]} dy = \int_1^3 {\left( {{y^2} + y} \right)} dy \cr & = \int_1^3 {\left( {{y^2} + 3} \right)} dy \cr & {\text{integrating}} \cr & = \left( {\frac{{{y^3}}}{3} + \frac{{{y^2}}}{2}} \right)_1^3 \cr & = \left( {\frac{{{{\left( 3 \right)}^3}}}{3} + \frac{{{{\left( 3 \right)}^2}}}{2}} \right) - \left( {\frac{{{{\left( 1 \right)}^3}}}{3} + \frac{{{{\left( 1 \right)}^2}}}{2}} \right) \cr & {\text{simplifying}} \cr & = \frac{{27}}{2} - \frac{5}{6} \cr & = \frac{{38}}{3} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.