Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 11 - Vectors and Vector-Valued Functions - 11.5 Lines and Curves in Space - 11.5 Exercises - Page 806: 44

Answer

$$\frac{2}{5}{\bf{i}} + \frac{1}{3}{\bf{k}}$$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{t \to 2} \left( {\frac{t}{{{t^2} + 1}}\,{\bf{i}} - 4{e^{ - t}}\sin \pi t\,{\bf{j}} + \frac{1}{{\sqrt {4t + 1} }}\,{\bf{k}}} \right) \cr & {\text{use the sum limits property }}\left( {{\text{see page 805}}} \right) \cr & = \mathop {\lim }\limits_{t \to 2} \left( {\frac{t}{{{t^2} + 1}}} \right){\bf{i}} - \mathop {\lim }\limits_{t \to 2} \left( {4{e^{ - t}}\sin \pi t} \right){\bf{j}} + \mathop {\lim }\limits_{t \to 2} \left( {\frac{1}{{\sqrt {4t + 1} }}} \right){\bf{k}} \cr & {\text{evalute each limit substitute }}2{\text{ for }}t \cr & = \left( {\frac{2}{{{2^2} + 1}}} \right){\bf{i}} - \left( {4{e^{ - 2}}\sin 2\pi } \right){\bf{j}} + \left( {\frac{1}{{\sqrt {4\left( 2 \right) + 1} }}} \right){\bf{k}} \cr & {\text{simplifying}} \cr & = \frac{2}{5}{\bf{i}} - \left( 0 \right){\bf{j}} + \left( {\frac{1}{3}} \right){\bf{k}} \cr & = \frac{2}{5}{\bf{i}} + \frac{1}{3}{\bf{k}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.