Calculus Concepts: An Informal Approach to the Mathematics of Change 5th Edition

Published by Brooks Cole
ISBN 10: 1-43904-957-2
ISBN 13: 978-1-43904-957-0

Chapter 5 - Accumulating Change: Limits of Sums and the Definite Integral - 5.5 Activities - Page 373: 6

Answer

$$\frac{{{x^2}}}{4} + \frac{1}{2}\ln \left| x \right| - \frac{1}{{{2^x}\ln 2}} + C$$

Work Step by Step

$$\eqalign{ & \int {\left( {\frac{1}{2}x + \frac{1}{{2x}} + \frac{1}{{{2^x}}}} \right)} dx \cr & {\text{sum rule for derivatives}} \cr & = \int {\frac{1}{2}x} dx + \int {\frac{1}{{2x}}} + \int {\frac{1}{{{2^x}}}} dx \cr & {\text{use the constant multiple rule }}\int {kf\left( x \right)dx} = k\int {f\left( x \right)} dx \cr & = \frac{1}{2}\int x dx + \frac{1}{2}\int {\frac{1}{x}} + \int {\frac{1}{{{2^x}}}} dx \cr & {\text{rewrite the last integral}} \cr & = \frac{1}{2}\int x dx + \frac{1}{2}\int {\frac{1}{x}} - \int {{2^{ - x}}} \left( { - 1} \right)dx \cr & {\text{Integrate using the rules of integration}} \cr & \int {{x^r}dx} = \frac{{{x^{r + 1}}}}{{r + 1}} + C,\,\,\,\,\int {\frac{1}{x}} dx = \ln \left| x \right| + C{\text{ }}\,\,{\text{and }}\int {{a^u}} du = \frac{{{a^u}}}{{\ln a}} + C,\,\,\, \cr & \cr & = \frac{1}{2}\left( {\frac{{{x^2}}}{2}} \right) + \frac{1}{2}\ln \left| x \right| - \frac{{{2^{ - x}}}}{{\ln 2}} + C \cr & {\text{simplifying}} \cr & = \frac{{{x^2}}}{4} + \frac{1}{2}\ln \left| x \right| - \frac{1}{{{2^x}\ln 2}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.