Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - 7.7 Approximate Integration - 7.7 Exercises - Page 564: 13

Answer

$$ \int_{0}^{4}\sqrt{y} \cos y dy ,\quad n=8 $$ Here $$ f(y)=\sqrt{y} \cos y ,\quad \Delta y=\frac{4-0}{8}=\frac{1}{2} $$ (a) the Trapezoidal Rule $$ \begin{aligned} T_{8} &=\frac{1}{2 \cdot 2}\left[f(0)+2 f\left(\frac{1}{2}\right)+2 f(1)+2 f\left(\frac{3}{2}\right)+2 f(2)+\\ +2 f\left(\frac{5}{2}\right)+2 f(3)+2 f\left(\frac{7}{2}\right)+f(4)\right] \\ &\approx-2.364034 \end{aligned} $$ (b) The midpoints Rule is given by: $$ \begin{aligned} M_{8} &=\frac{1}{2}\left[f\left(\frac{1}{4}\right)+f\left(\frac{3}{4}\right)+f\left(\frac{5}{4}\right)+f\left(\frac{7}{4}\right)+\\ \quad\quad +f\left(\frac{9}{4}\right)+f\left(\frac{11}{4}\right)+f\left(\frac{13}{4}\right)+f\left(\frac{15}{4}\right)\right]\\ & \approx-2.310690 \end{aligned} $$ (c) Simpson’s Rule: $$ \begin{aligned} S_{8} & =\frac{1}{2 \cdot 3}\left[f(0)+4 f\left(\frac{1}{2}\right)+2 f(1)+4 f\left(\frac{3}{2}\right)+\\ \quad\quad +2 f(2)+4 f\left(\frac{5}{2}\right)+2 f(3)+4 f\left(\frac{7}{2}\right)+f(4)\right] \\ & \approx-2.346520 \end{aligned} $$

Work Step by Step

$$ \int_{0}^{4}\sqrt{y} \cos y dy ,\quad n=8 $$ Here $$ f(y)=\sqrt{y} \cos y ,\quad \Delta y=\frac{4-0}{8}=\frac{1}{2} $$ and so the Trapezoidal Rule can be given by: $$ \int_{a}^{b} f(x) d x \approx T_{n}=\frac{\Delta x}{2}\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\cdots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right] $$ Therefore, (a) the Trapezoidal Rule $$ \begin{aligned} T_{8} &=\frac{1}{2 \cdot 2}\left[f(0)+2 f\left(\frac{1}{2}\right)+2 f(1)+2 f\left(\frac{3}{2}\right)+2 f(2)+\\ +2 f\left(\frac{5}{2}\right)+2 f(3)+2 f\left(\frac{7}{2}\right)+f(4)\right] \\ &\approx-2.364034 \end{aligned} $$ (b) The midpoints Rule is given by: $$ \int_{a}^{b} f(x) d x \approx M_{n}=\Delta x\left[f\left(\bar{x}_{1}\right)+f\left(\bar{x}_{2}\right)+\cdots+f\left(\bar{x}_{n}\right)\right] $$ where $$ \bar{x}_{i}=\frac{1}{2}\left(x_{i-1}+x_{i}\right)=\text { midpoint of }\left[x_{i-1}, x_{i}\right] $$ So, we have: $$ \begin{aligned} M_{8} &=\frac{1}{2}\left[f\left(\frac{1}{4}\right)+f\left(\frac{3}{4}\right)+f\left(\frac{5}{4}\right)+f\left(\frac{7}{4}\right)+\\ \quad\quad +f\left(\frac{9}{4}\right)+f\left(\frac{11}{4}\right)+f\left(\frac{13}{4}\right)+f\left(\frac{15}{4}\right)\right]\\ & \approx-2.310690 \end{aligned} $$ (c) Simpson’s Rule: $$ \begin{aligned} \int_{a}^{b} f(x) d x & \approx S_{n} \\ &=\frac{\Delta x}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)\\ +\cdots\right. \left.+2 f\left(x_{n-2}\right)+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right] \end{aligned} $$ So, we obtain: $$ \begin{aligned} S_{8} & =\frac{1}{2 \cdot 3}\left[f(0)+4 f\left(\frac{1}{2}\right)+2 f(1)+4 f\left(\frac{3}{2}\right)+\\ \quad\quad +2 f(2)+4 f\left(\frac{5}{2}\right)+2 f(3)+4 f\left(\frac{7}{2}\right)+f(4)\right] \\ & \approx-2.346520 \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.