Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - 7.3 Trigonometric Substitution - 7.3 Exercises - Page 531: 4

Answer

$$\displaystyle{\int\frac{x^2}{\sqrt{9-x^2}}dx=\frac{9\arcsin\left(\frac{x}{3}\right)-x\sqrt{9-x^2}}{2}+C}\\ $$

Work Step by Step

$\displaystyle{I=\int\frac{x^2}{\sqrt{9-x^2}}dx}\\$ $\displaystyle \left[\begin{array}{ll} x=3\sin\theta & x^2=9\sin^2\theta \\ & \\ \frac{dx}{d\theta}=3\cos\theta & dx=3\cos\theta\ d\theta \end{array}\right]$ Integration by substitution $\displaystyle{I=\int\frac{9\sin^2\theta}{\sqrt{9-9\sin^2\theta}}3\cos\theta\ d\theta}\\ \displaystyle{I=\int\frac{9\sin^2\theta}{\sqrt{9\left(1-\sin^2\theta\right)}}3\cos\theta\ d\theta}\\ \displaystyle{I=\int9\sin^2\theta}\\ \displaystyle{I=\frac{9}{2}\int1-\cos{2\theta}\ d\theta}\\ \displaystyle{I=\frac{9}{2}\left(\theta-\frac{1}{2}\sin{2\theta}\right)+C}\\ \displaystyle{I=\frac{9}{2}\theta-\frac{9}{4}\sin{2\theta}+C}\\ \displaystyle{I=\frac{9}{2}\theta-\frac{9}{2}\sin{\theta}\cos\theta+C}$ $\theta=\arcsin\left(\frac{x}{3}\right)\\ \sin\theta=\frac{x}{3}\\ \cos\theta=\frac{\sqrt{9-x^2}}{3}\\$ $\displaystyle{I=\frac{9}{2}\arcsin\left(\frac{x}{3}\right)-\frac{9}{2}\times\frac{x}{3}\times\frac{\sqrt{9-x^2}}{3}+C}\\ \displaystyle{I=\frac{9\arcsin\left(\frac{x}{3}\right)-x\sqrt{9-x^2}}{2}+C} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.