Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - 7.1 Integration by Parts - 7.1 Exercises - Page 517: 50

Answer

\[\int_{0}^\frac{\pi}{2}\sin^{2n}x \;dx=\frac{1\cdot 3\cdot 5 \cdots (2n-1)}{2\cdot 4\cdot 6 \cdots 2n}\frac{\pi}{2}\]

Work Step by Step

Let \[I_n=\int_{0}^\frac{\pi}{2}\sin^{n}x \;dx\] \[I_0=\int_0^\frac{\pi}{2}1dx=\frac{\pi}{2}-0=\frac{\pi}{2}\;\;\;\;\;\;\;\ldots (1)\] \[I_1=\int_{0}^\frac{\pi}{2}\sin x \;dx=\left[-\cos x\right]_{0}^{\frac{\pi}{2}}=0+1=1\;\;\;\;\;\;\;\;\;\ldots (2)\] Consider $n\geq 2$ \[J_n=\int\sin^{n}x \;dx=\int\sin^{n-1}x\;\sin x \;dx\] Using intgeration by parts: \[J_n=\sin^{n-1}x\int\sin x\;dx-\int\left[\frac{d}{dx}(\sin^{n-1}x)\int \sin xdx\right]dx\] Using (2) \[J_n=\sin^{n-1}x \;(-\cos x)+(n-1)\int\left[\sin^{n-2}x\cos x (\cos x)\right]dx\] \[J_n=-\cos x\;\sin^{n-1}x +(n-1)\int\sin^{n-2}x\;\cos^2 x dx\] \[J_n=-\cos x\;\sin^{n-1}x +(n-1)\int\sin^{n-2}x\;(1-\sin^2 x) dx\] \[J_n=-\cos x\;\sin^{n-1}x +(n-1)\int\sin^{n-2}x\;dx-(n-1)\int \sin^n x dx\] \[\Rightarrow J_n=-\cos x\;\sin^{n-1}x +(n-1)\int\sin^{n-2}x\;dx-(n-1)J_n\] \[\Rightarrow nJ_n=-\cos x\;\sin^{n-1}x +(n-1)\int\sin^{n-2}x\;dx\] \[J_n=\frac{-1}{n}\cos x\;\sin^{n-1}x +\frac{n-1}{n}\int\sin^{n-2}x\;dx\] \[J_n=\frac{-1}{n}\cos x\;\sin^{n-1}x +\left(\frac{n-1}{n}\right)J_{n-2}\] \[\Rightarrow I_n=\int_{0}^\frac{\pi}{2}\sin^{n}x \;dx=\left[J_n\right]_{0}^{\frac{\pi}{2}} \] \[\Rightarrow I_n=\int_{0}^\frac{\pi}{2}\sin^{n}x \;dx=\left[\frac{-1}{n}\cos x\;\sin^{n-1}x +\left(\frac{n-1}{n}\right)J_{n-2}\right]_{0}^{\frac{\pi}{2}} \] \[I_n=\left(\frac{n-1}{n}\right)I_{n-2}\;\;\;\forall n\geq 2\] \[\Rightarrow I_{n-2}=\left(\frac{n-3}{n-2}\right)I_{n-4}\] \[\Rightarrow I_{n-4}=\left(\frac{n-5}{n-3}\right)I_{n-6}\] \[\vdots\] $I_n=\left\{\begin{array}{ll} \left(\displaystyle\frac{n-1}{n}\right)\left(\displaystyle\frac{n-3}{n-2}\right)\left(\displaystyle\frac{n-5}{n-4}\right)\cdots \left(\displaystyle\frac{1}{2}\right)I_0\;\;\;\;\;,\text{If} \;n \;\text{is even}\\ \\ \left(\displaystyle\frac{n-1}{n}\right)\left(\displaystyle\frac{n-3}{n-2}\right)\left(\displaystyle\frac{n-5}{n-4}\right)\cdots \left(\displaystyle\frac{2}{3}\right)I_1\;\;\;\;\;,\text{If} \;n \;\text{is odd} \end{array}\right. $ $I_n=\left\{\begin{array}{ll} \left(\displaystyle\frac{n-1}{n}\right)\left(\displaystyle\frac{n-3}{n-2}\right)\left(\displaystyle\frac{n-5}{n-4}\right)\cdots \left(\displaystyle\frac{1}{2}\right)\left(\displaystyle\frac{\pi}{2}\right)\;\;,\text{If} \;n \;\text{is even}\\ \\ \left(\displaystyle\frac{n-1}{n}\right)\left(\displaystyle\frac{n-3}{n-2}\right)\left(\displaystyle\frac{n-5}{n-4}\right)\cdots \left(\displaystyle\frac{2}{3}\right)(1)\;\;\;,\text{If} \;n \;\text{is odd} \end{array}\right.$ is the reduction formula. Consider, \[\int_{0}^\frac{\pi}{2}\sin^{2n}x \;dx\] Since $2n$ is always even. Use reduction formula for n to be even. \[\int_{0}^\frac{\pi}{2}\sin^{2n}x \;dx=\left(\displaystyle\frac{2n-1}{2n}\right)\left(\displaystyle\frac{2n-3}{2n-2}\right)\left(\displaystyle\frac{2n-5}{2n-4}\right)\cdots \left(\displaystyle\frac{1}{2}\right)\left(\displaystyle\frac{\pi}{2}\right)\] \[\int_{0}^\frac{\pi}{2}\sin^{2n}x \;dx=\frac{1\cdot 3\cdot 5 \cdots (2n-1)}{2\cdot 4\cdot 6 \cdots 2n}\frac{\pi}{2}\] Hence Proven.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.