Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 6 - Inverse Functions - 6.8 Indeterminate Forms and I'Hospital's Rule - 6.8 Exercises - Page 502: 96

Answer

$0$

Work Step by Step

The area $A(\theta)$ is the area of the sector with angle $\theta$ and radius $QR$ minus the area of the triangle $\triangle POR$ it follows: $$A(\theta)=\frac{1}{2}OR^{2} \theta-\frac{1}{2}PQ \cdot OR$$ From the diagram we have $OP=OR$ because they are radii of the arc and: $$\sin(\theta)=\frac{PQ}{OP} \to \sin(\theta)=\frac{PQ}{OR} \to PQ=OR\sin(\theta) $$ So: $$A(\theta)=\frac{1}{2}OR^{2} \theta-\frac{1}{2}OR\sin(\theta) \cdot OR$$ $$A(\theta)=\frac{1}{2}OR^{2} \theta-\frac{1}{2}OR^{2}\sin(\theta)$$ $$A(\theta)=\frac{1}{2}OR^{2}( \theta-\sin(\theta))$$ The area $B(\theta)$ is: $$B(\theta)=\frac{1}{2}PQ \cdot QR \to B(\theta)=\frac{1}{2}OR\sin(\theta) \cdot QR $$ So the limit is: $$ \lim _{ \theta ^{+} \to 0}\frac{OR( \theta-\sin(\theta))}{\sin(\theta) \cdot QR}$$ $$ \lim _{ \theta ^{+} \to 0}\frac{OR}{QR}\cdot \frac{( \theta-\sin(\theta))}{\sin(\theta)}$$ $$\frac{OR}{QR}\cdot \lim _{ \theta ^{+} \to 0}\frac{( \theta-\sin(\theta))}{\sin(\theta)}$$ The limit has an indeterminate form type $\frac{0}{0}$ so we apply the l'Hospital's rule it follows: $$\frac{OR}{QR}\cdot\lim _{ \theta ^{+} \to 0} \frac{( \theta-\sin(\theta))'}{(\sin(\theta))'}$$ $$\frac{OR}{QR}\cdot\lim _{ \theta ^{+} \to 0} \frac{1-\cos(\theta)}{\cos(\theta)}$$ $$\frac{OR}{QR}\cdot \frac{1-\cos(0)}{\cos(0)}=0$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.