Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 6 - Inverse Functions - 6.6 Inverse Trigonometric Functions - 6.6 Exercises - Page 482: 71

Answer

If $a\gt0$ is continuous on $[a, b]$, show that: $$ \int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1} \frac{x}{a}+C $$ Let $u=x / a $ and $d u=d x / a, x$. So the Substitution Rule gives $$ \begin{aligned} R.H.S &.=\int \frac{d x}{\sqrt{a^{2}-x^{2}}} \\ &=\int \frac{d x}{a \sqrt{1-(x / a)^{2}}} \\ &=\int \frac{d u}{\sqrt{1-u^{2}}} \\ &=\sin ^{-1} u+C \\ &=\sin ^{-1} \frac{x}{a}+C\\ & =L.H.S. \end{aligned} $$

Work Step by Step

If $a\gt0$ is continuous on $[a, b]$, show that: $$ \int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1} \frac{x}{a}+C $$ Let $u=x / a $ and $d u=d x / a, x$. So the Substitution Rule gives $$ \begin{aligned} R.H.S &.=\int \frac{d x}{\sqrt{a^{2}-x^{2}}} \\ &=\int \frac{d x}{a \sqrt{1-(x / a)^{2}}} \\ &=\int \frac{d u}{\sqrt{1-u^{2}}} \\ &=\sin ^{-1} u+C \\ &=\sin ^{-1} \frac{x}{a}+C\\ & =L.H.S. \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.