Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 6 - Inverse Functions - 6.3 Logarithmic Functions - 6.3 Exercises - Page 428: 67

Answer

$a)$ See solution $b)$ $f^{-1}(x)=\frac{e^{x}-e^{-x}}{2}$

Work Step by Step

$a)$ $$f(-x)=\ln(-x+\sqrt{x^{2}+1})$$ $$f(-x)+f(x)=\ln(-x+\sqrt{x^{2}+1})+\ln(x+\sqrt{x^{2}+1})$$ $$f(-x)+f(x)=\ln((-x+\sqrt{x^{2}+1})(x+\sqrt{x^{2}+1}))$$ $$f(-x)+f(x)=\ln((\sqrt{x^{2}+1})^{2}-x^{2})$$ $$f(-x)+f(x)=\ln(x^{2}+1-x^{2})$$ $$f(-x)+f(x)=\ln(1)$$ $$f(-x)+f(x)=0$$ $$f(-x)=-f(x)$$ so $f$ is an odd function. $b)$ Solve the following equation for $x$: $$y=\ln(x+\sqrt{x^{2}+1})$$ $$e^{y}=x+\sqrt{x^{2}+1}$$ also since $f$ is odd it follows that: $$-y=\ln(-x+\sqrt{x^{2}+1})$$ $$e^{-y}=-x+\sqrt{x^{2}+1}$$ so: $$e^{y}-e^{-y}=x+\sqrt{x^{2}+1}-(-x+\sqrt{x^{2}+1})$$ $$e^{y}-e^{-y}=2x$$ $$\frac{e^{y}-e^{-y}}{2}=x$$ so the inverse of $f$ is: $$f^{-1}(x)=\frac{e^{x}-e^{-x}}{2}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.