Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 5 - Applications of Integration - 5.3 Volumes by Cylindrical Shells - 5.3 Exercises - Page 382: 8

Answer

$\frac{3\pi}{10}$

Work Step by Step

Given $$y=x^2 ,\ \ \ y=\sqrt{x} $$ first, we find the intersection points \begin{aligned} x^2&=\sqrt{x}\\ x^3&=x\\ x^3-x&=0\\ x(x^2-1) &=0 \\ \end{aligned} then $x=0,\ x=1,\ x=-1$ , we refuse $x=-1 $ . Now, we need to find the volume of the generated solid when the region rotates about y-axis , using slicing \begin{aligned} V&= \int _{a}^{b}A(y)dy \end{aligned} where \begin{aligned} A(y)&= \pi [f^2(y)-g^2(y)]\\ &= \pi [(\sqrt{y})^2- (y^2)^2] \end{aligned} Hence \begin{aligned} V&=\pi \int_{0}^{1}[y-y^4]dy\\ &= \pi \left[\frac{1}{2}y^2- \frac{1}{5}y^5\right]\bigg|_0^1\\ &= \frac{3\pi}{10} \end{aligned} ----------------------------- Using cylindrical shells. \begin{aligned} V&= 2\pi\int r(x)h(x)dx\end{aligned} Here \begin{aligned} r(x)& = x\\ h(x) &= \sqrt{x}-x^2\\ \end{aligned} Then \begin{aligned} V&= 2\pi\int r(x)h(x)dx\\ &=2\pi \int_0^2x(\sqrt{x}-x^2)dx\\ &= 2\pi \int_0^2(x^{3/2}-x^3)dx\\ &= 2\pi \left(\frac{2}{5} x^{5/2}-\frac{1 }{4}x^4\right)\bigg|_0^1\\ &= \frac{3\pi}{10}\end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.