Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 4 - Integrals - Problems Plus - Problems - Page 354: 17

Answer

\[2[\sqrt 2-1]\]

Work Step by Step

We have to find :- \[\lim_{n\rightarrow \infty}\left[\frac{1}{\sqrt{n}\sqrt{n+1}}+\frac{1}{\sqrt{n}\sqrt{n+2}}+...+\frac{1}{\sqrt{n}\sqrt{n+n}}\right]\] \[=\lim_{n\rightarrow \infty}\left[\frac{1}{n\sqrt{1+\frac{1}{n}}}+\frac{1}{n\sqrt{1+\frac{2}{n}}}+...+\frac{1}{n\sqrt{1+\frac{n}{n}}}\right]\] \[=\lim_{n\rightarrow \infty}\frac{1}{n}\left[\frac{1}{\sqrt{1+\frac{1}{n}}}+\frac{1}{\sqrt{1+\frac{2}{n}}}+...+\frac{1}{\sqrt{1+\frac{n}{n}}}\right]\] \[=\lim_{n\rightarrow \infty}\frac{1}{n}\sum_{k=1}^{n}\frac{1}{\sqrt{1+\frac{k}{n}}}\;\;\;...(1)\] We will use the formula \[\lim_{n\rightarrow \infty}\frac{1}{n} \sum_{k=f(n)}^{g(n)}F\left(\frac{k}{n}\right)=\int_{\lim_{n\rightarrow \infty}\frac{f(n)}{n}}^{ \lim_{n\rightarrow \infty}\frac{g(n)}{n}}F(x)\:dx\;\;\;...(2)\] Using (2) in (1) \[\lim_{n\rightarrow \infty}\frac{1}{n}\sum_{k=1}^{n}\frac{1}{\sqrt{1+\frac{k}{n}}}=\int_{\lim_{n\rightarrow \infty}\frac{1}{n}}^{\lim_{n\rightarrow \infty}\frac{n}{n}}\frac{1}{\sqrt{1+x}}dx\] \[\lim_{n\rightarrow \infty}\frac{1}{n}\sum_{k=1}^{n}\frac{1}{\sqrt{1+\frac{k}{n}}}=\int_{0}^{1}\frac{1}{\sqrt{1+x}}dx\] \[\Rightarrow \lim_{n\rightarrow \infty}\frac{1}{n}\sum_{k=1}^{n}\frac{1}{\sqrt{1+\frac{k}{n}}}=2\left[\sqrt{1+x}\right]_{0}^{1}\] \[\Rightarrow \lim_{n\rightarrow \infty}\frac{1}{n}\sum_{k=1}^{n}\frac{1}{\sqrt{1+\frac{k}{n}}}=2\left[\sqrt{2}-1\right]\] Hence \[\lim_{n\rightarrow \infty}\left[\frac{1}{\sqrt{n}\sqrt{n+1}}+\frac{1}{\sqrt{n}\sqrt{n+2}}+...+\frac{1}{\sqrt{n}\sqrt{n+n}}\right]=2\left[\sqrt{2}-1\right]\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.